
Sample Size Planning

Why is sample size planning necessary?

 Good planning is crucial to the success of any research 
study and sample size planning is an integral part of 
study planning for many scientific studies. 

 A study with too small a sample size is likely to miss 
effects that are of scientific importance due to a lack of 
power (ability to correctly reject a false null hypothesis) 
while a study with a sample size that is larger than what 
is necessary wastes resources (bigger sample size = 
more $$$), may lead to small, clinically insignificant, 
effects being declared statistically significant and also 
raise ethical issues for some human studies. 

Approaches to sample size planning

 Appropriate sample size planning should be 
conducted in order to avoid these problems. 

 There are different ways to approach the problem 
of sample size planning.

1. If estimation of a parameter is of primary interest the 
sample size can be based on specifying the desired width 
of a confidence interval. For example opinion surveys are 
often designed to have confidence intervals of +/- 3%.

2. The more common approach is to calculate a sample size 
that achieves a certain pre-specified power to reject a null 
hypothesis (in most cases researchers are interested in 
detecting some sort of effect or difference between 
groups and so will want to reject the null hypothesis). 

Sample size planning for hypothesis testing

 Sample size planning for hypothesis testing involves:
1. Specifying the study design & statistical method to be used. 
2. Specifying the null and alternative hypotheses. 
3. Specifying the desired power  (usually 80% or 90%).
4. Specify the significance level, α, i.e. the cutoff for determining 

statistical significance, usually, but not always = .05.
5. Specifying the expected effect size. The exact nature of the 

effect size depends on the data and statistical method used 
for the analysis. For example for a two group comparison of a 
continuous outcome with the t-test the effect size is the 
expected difference between the group means divided by the 
standard deviation of the outcome. 



Avoid “shortcuts” in sample size planning

 Finding the appropriate effect size is not always 
straightforward and many researchers use various 
“shortcuts” to circumvent this difficulty, the most 
common of which is to use what are commonly 
referred to as Cohen’s tables or Cohen’s effect sizes.

 Basically this method involves declaring effect sizes 
to be either large, medium, or small and then 
obtaining the sample size necessary to detect that 
effect size with a specified power. 

Avoid “shortcuts” in sample size planning
 This sort of simplification may seem appealing as it 

appears to get around the difficulties inherent in 
estimating expected differences between groups and 
variation in the outcome, however this is misguided.

 The problem with this method is that there is often no 
justification for expecting “large”, “medium” or “small” 
effect sizes.

 For example according to Cohen’s tables for a two-
sample t-test to detect a “medium” effect size (defined 
as a difference between groups of 0.5 standard 
deviations) requires 65 subjects in each group for 80% 
power.  

Avoid “shortcuts” in sample size planning
 Thus for example if one is interested in comparing 

SBP between two groups  and the standard deviation 
is estimated to = 20mm then a medium effect size 
corresponds to a difference = 10 mm. 

 Suppose the true difference = 7 mm then the power < 
80% and the study with n = 65 per group is 
underpowered to detect this difference (which 
nonetheless may be large enough to be scientifically 
relevant & interesting). 

 The point is that the effect size which is clinically 
relevant and/or realistically can be expected varies 
from study to study and cannot simply be labeled as 
“small”, “medium” or “large”. 

Avoid “shortcuts” in sample size planning

 In fact the use of Cohen’s tables is not really 
“sample size planning” at all.

 If we consider the example of calculating sample 
size for a two-sample t-test once we specify power 
(say 90%) and the cutoff for statistical significance 
(.05) the sample size is completely determined by 
effect size, thus “large” effect size -> “small” sample 
size, “medium” effect size -> “medium” sample size 
and “small” effect size -> “large” sample size. 

 Thus asking for a sample size to detect a “medium” 
effect size is exactly equivalent to simply asking for 
a “medium” sample size!



Power
 In the past the desired ‘power’ for sample size 

calculations tended to be set at 80% but recently some 
researchers have begun to suggest 90% or even 95%. 

 There are good reasons for this (lower type II error rate) 
but one problem that emerges is that the sample size 
(and therefore the cost) increases as a non-linear 
function of power, the closer you get to 100% the faster 
the sample size increases. 

 Another issue is that your power is only achieved if 
your estimate of effect size is actually the true effect 
size for the population.

If EffectSizepop < EffectSizeest then powertrue<powerdesired

If EffectSizepop > EffectSizeest then powertrue>powerdesired

Type I error - α

 The type I error rate (the cutoff for declaring 
statistical significance) is usually set = .05.

 However there are situations, for instance if multiple 
comparisons are to be done, for which a lower cutoff 
may be desired (e.g. Bonferroni correction).  

Two-sided or one-sided test
 Another consideration is whether the hypothesis test 

is one-sided or two-sided.
 In the vast majority of cases the test will be two-

sided even if it is suspected that the difference 
between groups should go in one direction. 

 In general a one sided test is appropriate when a 
large difference in one direction would lead to the 
same action as no difference at all.

 One-sided tests should never be used as a way to 
make a non-significant result significant (e.g. two-
sided p = 0.08). 

Effect Size
 Estimating an appropriate effect size is the hardest 

part of doing a sample size calculation. 

 Effect size for comparisons of means requires both 
an estimated mean difference between the groups 
and an estimated variance(s) or standard deviation(s) 
of the outcome of interest.

 Effect size for comparison of proportions requires an 
estimate of the two proportions, as the variance of 
the difference in proportions is based on the 
proportions themselves. 



Estimating Effect Size
 A common practice is to base the estimate of effect 

size on previous studies in the literature. 
 For example a previous study may have found a 

difference in means = 10 with a common standard 
deviation for the populations = 15 which would 
require a sample size = 48 per group to obtain a 
power of 90% to detect a difference given an alpha 
level = 0.05. 

 However just because a previous study with the 
same groups and outcomes found this difference 
does not necessarily mean you can expect the same 
in your study. 

Estimating Effect Size from Prior Studies
 What are some reasons why the expected population 

difference in your study may be different from a 
previous study from the literature?

 What if there have been several previous studies? 

Estimating Effect Size from Pilot Studies
 Another popular option, especially if there are no prior 

relevant studies, is to use the data from a pilot study to 
estimate the sample size. 

 In general doing a pilot study is a good idea for many 
reasons but caution needs to be exercised when using the 
effect size observed in the pilot study as the estimated effect 
size for the main study. 

 The main reason for caution is that the mean difference and 
SD estimated from the pilot study are also subject to 
sampling error and this error can be quite large if the sample 
size for the pilot is small.

 It’s a good idea to also calculate a confidence interval for the 
mean difference observed to see how precise your effect 
size estimate is. 

 If for example you have a mean difference = 20 with a 95% CI 
= (5, 35) it may be a good idea to use a mean difference < 20 
in the calculation to be conservative. 

Estimating Effect Size using ‘smallest clinically 
meaningful difference’  

 A good alternative to the above approaches is to 
estimate the effect size you wish to detect based on 
the concept of wanting sufficient power to detect a 
‘clinically meaningful’ difference.

 The smallest clinically meaningful difference is just 
the smallest difference between means that would 
have some sort of clinical significance – for example 
if a researcher were comparing medications to lower 
blood pressure, would a difference of 1 mmHg 
between treatments make a clinical difference, or 5 
mmHg or 10 mmHg? 

 As sample size rises rapidly with smaller effect size 
(halving effect size -> quadrupling sample size) it is 
important not to specify a sample size to detect 
arbitrarily small and essentially meaningless 
differences. 



Sample Size for Regression Models

 Sample sizes for regression models are generally 
based on two approaches:

1. Rules of thumb involving the number of 
independent (predictor) variables to be included in 
the models. 

2. Sample sizes based on effect sizes (betas or 
correlations for linear regression, adjusted odds 
ratios for logistic regression, hazard ratios for Cox 
regression).  

Sample Size for Linear Regression:
Rules of Thumb

 There have been many rules of thumb proposed 
for multiple linear regression based on the number 
of predictors including:

1. N >= 10*m
2. N > 50 + m 
3. N >= 20*m
4. N >=50 + 8*m

 S Green (Multivariate Behavioral Research, 1 July 
1991) found that (4) seemed to work best but 
argued that effect size should also be taken into 
account.   

Sample Size for Logistic Regression: Rules of Thumb

 The power for logistic regression analysis is based 
not only on the total sample size but also on the 
balance between the outcomes – for example a study 
with 200 subjects, 100 with the event and 100 without 
the event has more power than a study with 1000 
subjects, 10 with the event and 990 without the event. 

 Therefore when planning the sample size the 
expected proportion with and without the event of 
interest also needs to be estimated. 

 A commonly used rule of thumb is:
Number of observations in smaller outcome group
>= 10*number of predictors. 

 Thus for example if you had 10 predictors and the 
expected proportion of events was 60% you would 
need how many observations? 

Sample Size for Logistic Regression: Rules of Thumb

 A commonly used rule of thumb is:
Number of observations in smaller outcome group
>= 10*number of predictors. 

 Thus for example if you had 10 predictors and the 
expected proportion of events was 60% you would 
need how many observations? 



Sample Size for Logistic Regression: Rules of Thumb

 A recent paper [Vittinghoff & McCulloch, Am J 
Epidemiology, 2007] stated that this rule of thumb 
may be too conservative for studies for which 
confounder control, rather than prediction, was the 
main motivation for using logistic regression and 
that smaller sample sizes may be possible 
depending on the effect size for the main predictor of 
interest. 

 Another study [FE Harrell et al, Statistics in Medicine, 
1996] stated that up to 20 ‘events per variable’ may 
be necessary for prediction models. 

Sample Size for Cox PH Regression: Rules of Thumb

 Sample size rules of thumb for Cox proportional 
hazards regression models are similar to those for 
logistic regression except that rather than being 
based on the number in the smallest outcome group 
they are based on the number of events (i.e. non-
censored observations). 

 Thus a study in which very few are censored has 
more power than those in which the percentage 
censored is high – thus the expected proportion of 
observed events needs to be taken into account. 

Sample Size for Regression Models based on effect sizes

 Basing the regression sample sizes on effect size is 
particularly useful when the models are used for 
confounding and the focus of the analysis is on one 
predictor variable. 

 Such calculations can be done by using the NCSS-
PASS software.

 For linear regression the effect size is measured by 
the correlation, for logistic regression by the odds 
ratio but the software also takes into account the 
amount of control for other variables, i.e. the R2 for 
the other (confounding) variables in the model. 

 The more variability that is controlled by the other 
variables the smaller the required sample size. 

Sample Size for Clustered Data

 Sample sizes for clustered data including data 
collected using clinical trials and cluster 
randomization will generally need to be larger than 
those for non-clustered data.

 This is due to the fact that observations in a single 
cluster (e.g. patients in a clinic, students in a school) 
will not be independent of one another and the 
correlation between them will reduce the power 
thereby making a larger sample size necessary). 

 The ratio of the sample size required for cluster 
randomization to that required for simple 
randomization is called the ‘design effect’ and 
depends on how correlated observations are within 
each cluster [see reference for details]. 



Other Considerations regarding Sample Size
 Post-hoc power calculation – this is a power calculation 

done after the study is completed based on the 
observed effect size in the study.

 For example if you completed your study and observed 
a mean difference = 5 and an SD = 10 with a sample size 
of 200, you would calculate the power based on these 
numbers. 

 Most statisticians regard post-hoc power calculations as 
useless –
 They give no extra information – if the p-value is small the post-

hoc power will be high, if the p-value is large the post-hoc power 
will be small.

 Once the study is over the power calculation really has not use, 
if you obtained a significant result you had enough power (or 
you made a type I error), if the result is not significant either you 
did not have enough power or the null hypothesis is true.  

 Unfortunately reviewers seem to commonly request post-hoc 
power so you may have no choice. 

Other Considerations regarding Sample Size

 What if the sample size is fixed by other 
considerations? 
 Amount of money available for the study.
 For rare conditions may be limited by total number of 

patients available in the clinic, hospital or even country. 

• In this case power can be calculated for the specified 
effect size. 
• If the power is then very low this can be used to 
argue for a larger budget, or perhaps that the 
particular study may not be useful.
• Alternatively the power and sample size can be fixed 
and the effect size that can be detected with a given 
power is then calculated. 
• If the effect size is reasonable then the study may 
proceed. 

Sample Size Software
 NCSS-PASS – very comprehensive and reasonably 

user friendly, but expensive $US 750 for a single user 
license. 7-day free trial version available. 

 SISA – free online program can do simple calculations 
for two group comparisons of means or proportions. 
http://www.quantitativeskills.com/sisa/index.htm

 G-power – free downloadable program. Less user-
friendly and comprehensive than PASS but more 
comprehensive than most online programs. 
http://www.psycho.uni-duesseldorf.de/aap/projects/gpower/

 Java Applets for Sample Size: 
http://www.cs.uiowa.edu/~rlenth/Power/

 CUHK CCT: Survival Analysis sample size
http://www.cct.cuhk.edu.hk/stat/index.htm
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